

New Positron Beam Applications: Positrons Reveal Lattice Defects in Functional Materials and Electronic Structure in Correlated Systems

Christoph Hugenschmidt

Technische Universität München

New Positron Beam Applications: Positrons Reveal Lattice Defects in Functional Materials and Electronic Structure in Correlated Systems

Christoph Hugenschmidt

Technische Universität München

Positron Beam Facility at NEPOMUC

Positron Beam Facility at NEPOMUC

Outline

Positrons in Matter

Conclusion & Future

Positrons in Matter

Positrons fate:

- thermalization ~10⁻¹² s
- diffusion ~10⁻¹⁰ s
 - → ~100 nm
- defect trapping
- annihilation
 - \rightarrow 2 collinear γ -quanta

Experiment:

- **positron** lifetime τ
 - $\rightarrow \rho$ (e-)
- Doppler-broadening ΔE Angular correlation $\Delta \Theta$

→ p(e-)

Positrons in Matter

Positrons in Matter

What We Measure

Coincident Doppler-Broadening Spectroscopy – CDBS

2γ - Annihilation & Electron Momentum

Outline

Positrons in Matter

Conclusion & Future

NEPOMUC NEutron induced POsitron Source MUniCh

C. H. et al NIM A 593 (2008) 616; New J. Phys. 14 (2012) 055027; J. Phys. Conf. Ser. 443 (2013) 012079; Surf. Sci. Reports 71 (2016) 547

Positron Beam at NEPOMUC

z [nm]

CDB Spectrometer at NEPOMUC

T. Gigl, L. Beddrich, M. Dickmann, B. Rienäcker, M.Thalmayr, S. Vohburger, and C. Hugenschmidt, New J. Phys. 19 (2017) 123007

Superconductivity in YBCO

http://eneff-industrie.info/projekte/2017/supraleiter-kabel-in-essen

Superconductivity in YBCO

 \rightarrow Oxygen content crucial for T_c

Single Crystalline $YBa_2Cu_3O_{7-\delta}$ Thin Films

Preparation

- Pulsed Laser Deposition (PLD) on STO substrate → Thickness 210 nm +/-10 nm
- Heat treatment (~400°C) → Reduction of oxygen content

Characterization

Transport measurements					
XRD \rightarrow c-axis parameter —					
$\rightarrow \delta$ and T _c <i>mean</i> values	Sample	δ	$T_{\rm c}({\sf K})$	$t_{ ext{temp}}(min)$	$p_{ m temp}({\sf mbar})$
Positrons	A1	0.191	90	n.a.	n.a.
DBS (x,y,E,T) & CDBS	A2	0.475	60	30	$2 \cdot 10^{-2} (O_2)$
$\rightarrow \delta(x,y,z) \& T_c(x,y,z)$	A3	0.641	60	30	10^{-7}
	A4	0.791	25	50	10^{-7}

DBS on YBCO Thin Films

S(E) fit with a two-layer model: 210 nm YBCO on STO

→ Fraction of positrons annihilating in YBCO layer

 \rightarrow Very short diffusion length: 1-2nm

Oxygen Deficiency in YBCO

Imaging of δ and ${\rm T_c}$ Variation

DBS with Scanning Positron Beam \rightarrow S(x,y)

Depth Profile of T_c

DBS with Positron Beam \rightarrow S(z)

- 230nm YBCO film as prepared & after tempering at 400°C
- Use simple model for S(z) sufficient to explain S(E₊)

Laser Beam Welded Al Alloy

Material: AlCu6Mn (EN AW 2219-T87)

- Age hardenable Al alloy
- High strength and low weight
- Laser beam welding: (LBW)
 - Beam spot & heat impact small
 - \rightarrow small heat affected zone (HAZ)
 - Weld accuracy & reproducibility high

LBW of Al alloys:

- Weight reduction
 - ightarrow replacement of steel and riveted joints

To be studied:

- Improvement of mechanical stability of joint
- What about (point) defects?
- Spatial distribution of precipitates?

Sample preparation IWB at TUM :

- Single-mode laser (IPG YLR-3000)
- Laser power: 2.6 kW

Spot size: 50 μm Oscillating with 200 Hz, 0.2 mm amplitude

Welding speed: 100 mm/s.

Defect Mapping on a LBW

Sample: Laser beam weld (LBW) of AlCu6Mn (EN AW 2219-T87)

Defect Mapping on a LBW

Results:

Gradient of S(y) outside LBW → defect gradient generated during cold-rolling

Sharp transition at LBW edges → well localized small heat affected zone (HAZ) (d) Drastic **increase of S in LBW** → creation and quenching of a large amount of **vacancy-like defects**

T. Gigl, L. Beddrich, M. Dickmann, B. Rienäcker, M.Thalmayr, S. Vohburger, and C. Hugenschmidt, New J. Phys. 19 (2017) 123007

CDBS at LBW of AlCu6Mn

P1, P2

Significant contribution of Cu signature

→ positron trapping at **Cu rich precipitates**;

in agreement with artificially age-hardened precipitates (O phase, Al₂Cu phase)

P3

Disappearance of Cu signature

 \rightarrow melting of Cu rich phases + rapid cooling

ightarrow formation of supersaturated solid solution

Appearance of confinement peak:

 \rightarrow presence of **vacancies** (& V_{Al}-Cu?)

T. Gigl, L. Beddrich, M. Dickmann, B. Rienäcker, M.Thalmayr, S. Vohburger, and C. Hugenschmidt, New J. Phys. 19 (2017) 123007

LBW of Al Alloys:

- **2D defect imaging** within short time and <50µm resolution
- Identification of Cu precipitates

High T_c-Superconductors

- Positron ideal **probe for oxygen deficiency** δ in YBCO
- **•** Non-destructive **spatial resolved determination of** δ **and** T_c **!**

Outline

Positrons in Matter

Conclusion & Future

2D-ACAR spectrometer at TUM:

Future:

 \blacksquare e⁺ beam \rightarrow surface, interface, thin layers, 2D electron systems...

2D-ACAR: Principle

Electron momentum density

 $N(p_x, p_y)$: 2D projection of 3D electron momentum density

$$N\left(p_{x},p_{y}\right) \propto \int \mathrm{d}p_{z} \sum_{i=\mathrm{occ.}} \sum_{j} \left| \int \mathrm{e}^{-i\mathbf{r}\cdot\mathbf{p}} \psi^{+}(\mathbf{r})\psi^{-}_{i,j}(\mathbf{r}) \,\mathrm{d}\mathbf{r} \right|^{2}$$

- product of positron and electron wavefunction
- ▶ in momentum space
- \blacktriangleright sum over all occupied states *i* in all bands *j*
- projecting allong the longitudinal component

2D-ACAR: Principle

Spin-Polarized ACAR

■ Beta-decay → right-handed positrons

Singlet 2γ-annihilation strongly favored

Change magnetization of the sample

→ positron predominantly probes either of the two spin bands

Look at difference spectrum $\hat{U} - \mathcal{V} : N_{\pm}(p_x, p_y)$

Electron Correlations in Nickel

Nickel

- Magnetic FCC metal
 One unpaired 3d-electron
 "simple" test case for
- theory and experiment

http://www.phys.u.edu

Theory

- 6eV satellite peak arises when correlations are included (DMFT)
- Electron states are relocated
- Effect of correlation change the appearance of the Fermi surface

Nickel: 2D-ACAR Results

Integration direction along <100>: 4-fold symmetry

Magnetic difference spectrum exhibits the same symmetry

Nickel: Comparison with Theory

← LCW folded magnetic 2D projection along <100>

← Theory w/o e-e- correlation (convoluted with exp. resolution)

Significant effect due to electronic correlations

Electron Correlation Strength in Nickel

Electronic Structure of Cu₂MnAl

Heusler compounds

 F. Heusler 1903: ferromagnetic Cu₂MnAl
 Formula X₂YZ (Space group L2₁) X, Y transition metals Z non-magnetic/non-metallic element
 Large variety of electronic ground states: Insulating, (half-)metallic, semiconducting, ferromagnetic, superconducting

Single crystalline Cu₂MnAl

- Demanding to produce"large" & defect free samples
- Samples grown by optical floating zone
- \rightarrow A. Neubauer, A. Bauer, C. Pfleiderer

A. Neubauer et al. NIM A 688 (2012) 66

C.H. et al. Appl. Phys. A 119 (2015) 997

Spin-Polarized 2D-ACAR on Cu₂MnAl

Cu₂MnAl

2D projections along [100] at RT \rightarrow anisotropy of maj., min. density & difference

Excellent agreement between theory and experiment
 3D reconstruction of Fermi sheets for individual spin channels

Cu₂MnAI: 3D Reconstruction of Fermi Surface

Results

Contribution of each individual Fermi sheet to magnetization !

Total magnetization:
 3.6(5) μB/f.u.

J. Weber, A. Bauer, P. Böni, H. Ceeh, S. B. Dugdale, D. Ernsting, W. Kreuzpaintner, M. Leitner, C. Pfleiderer, C. Hugenschmidt; PRL 115 (2015) 206404

Summary

Plans for a Next-Generation Positron Beam

Inverse Compton Scattering & Positron Production

Features:

Tiny diameter of γ beam

\rightarrow high brightness

- Narrow band width
- Polarization

- \rightarrow no γ 's with E < 2mc²
- \rightarrow spin-resolved positron beam experiments

ELI-NP positron source project:

- Flux of moderated positrons: 1-2.10⁶ e+/s
- Degree of polarization: 31-45%

N. Djourelov et al. Rom. Rep. Phys. 68 (2016) S735 EU: ELI-NP/TDR/RA2/G2P/3/Jan2015

Ultra-Dense Positron Pulses

- A) **NEPOMUC**: continuous positron beam (primary or remoderated)
- B) Cooling & trapping in buffer gas trap
- **C)** Accumulation in UHV
- D) Collection and accumulation in multi-cell trap
- Aim: Pulse of 10⁹ e+ within few ns

DFG TUM/IPP (HU 978/15-1) DFG Uni Greifswald/IPP/TUM (HU 978/16-1) ERC advanced grant, T. Pedersen, IPP: "Pair plasma"

Uni Greifswald

Lawrence Univ

UCSD

Alumni: K. Schreckenbach C. Piochacz B. Straßer M. Stadlbauer J. Mayer P. Pikart M. Reiner N. Qi H. Ceeh J. Weber S. Zimnik | S. Legl T. Brunner B. Löwe F. Lippert N. Grill M. Thalmayr G. Zagler | K. Hain M. Rutzinger E. Erdnüss S. Sailer C. Herold M. Schleuder L. Beddrich B. Kalis ...

UniBW München Uni Augsburg Univ Bristol TUM E21/E51 MPI Stuttgart MLZ FRMII TUM iwb Uni Halle Univ Tsukuba

G. Dollinger, W. Egger, J. Mitteneder L. Chioncel, G. Hammerl, D. Vollhardt S. Dugdale P. Böni, C. Pfleid E. Benckiser **THANK YOU !** W. Petry A. Bachmann

R. Krause-Rehberg, R. Scheer A. Uedono

Chiba Univ M. Fujinami Univ Tokyo/KEK T. Hyodo, K. Wada Univ Trento R. Brusa

M. Doser

T. Pedersen, H. Saitoh, J. Stanja, U. Hergenhahn L. Schweikhart C. Surko, J. Danielson M. R. Stoneking

Deutsche Forschungsgemeinschaft DEC

RISE

Universität Bayern e.V. BaCaTeC

GEFÖRDERT VOM

